Spin wave nonreciprocity for logic device applications
نویسندگان
چکیده
منابع مشابه
Spin wave nonreciprocity for logic device applications
The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disru...
متن کاملA Three-Terminal Spin-Wave Device for Logic Applications
We demonstrate a three-terminal spin wave-based device utilizing spin wave interference. The device consists of three coplanar transmission lines inductively coupled to the 100nm thick CoFe film. Two spin wave signals are excited by microwave fields produced by electric current in two sets of lines, and the output signal is detected by the third set. The initial phases of the spin wave signals ...
متن کاملMagnetoelectric spin wave amplifier for spin wave logic circuits
Alexander Khitun, Dmitri E. Nikonov, and Kang L. Wang Department of Electrical Engineering, Device Research Laboratory, Focus Center on Functional Engineered Nano Architectonics (FENA), Western Institute of Nanoelectronics (WIN), University of California at Los Angeles, Los Angeles, California 90095-1594, USA Technology Strategy, Technology and Manufacturing Group, Intel Corporation, Santa Clar...
متن کاملConditions for the spin wave nonreciprocity in an array of dipolarly coupled magnetic nanopillars
It is demonstrated that collective spin waves (SWs) propagating in complex periodic arrays of dipolarly coupled magnetic nanopillars existing in a saturated (single-domain) ground state in a zero bias magnetic field could be nonreciprocal. To guarantee the SW nonreciprocity two conditions should be fulfilled:(i) existence of a nonzero out-of-plane component of the pillars’ static magnetization ...
متن کاملEnhancement of spin-wave nonreciprocity in magnonic crystals via synthetic antiferromagnetic coupling
Spin-wave nonreciprocity arising from dipole-dipole interaction is insignificant for magnon wavelengths in the sub-100 nm range. Our micromagnetic simulations reveal that for the nanoscale magnonic crystals studied, such nonreciprocity can be greatly enhanced via synthetic antiferromagnetic coupling. The nonreciprocity is manifested as highly asymmetric magnon dispersion curves of the magnonic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2013
ISSN: 2045-2322
DOI: 10.1038/srep03160